

Department of Electronics and Communication Engineering

EC8491 – Communication Theory

Unit III - MCQ Bank

- 1. Let X be a random variable with probability distribution function f (x)=0.2 for |x|<1
 - = 0.1 for $1 < |\mathbf{x}| < 4$
 - = 0 otherwise

The probability P (0.5 < x < 5) is _____

- (a) 0.3
- (b) 0.5
- (c) 0.4
- (d) 0.8

2. E (XY)=E (X)E (Y) if x and y are independent.

- (a) True
- (b) False
- 3. If E denotes the expectation the variance of a random variable X is denoted as?
 - (a) (E(X))²
 - (b) E(X²)-(E(X))²
 - (c) $E(X^2)$
 - (d) 2E(X)
- 4. X is a variate between 0 and 3. The value of E(X²) is _____
 - (a) 8
 - (b) 7
 - (c) 27
 - (d) 9

- 5. The random variables X and Y have variances 0.2 and 0.5 respectively. Let Z= 5X-2Y. The variance of Z is?
 - (a) 3
 - (b) 4
 - (c) 5
 - (d) 7
- 6. Which of the following mentioned standard Probability density functions is applicable to discrete Random Variables?
 - (a) Gaussian Distribution
 - (b) Poisson Distribution
 - (c) Rayleigh Distribution
 - (d) Exponential Distribution
- 7. What is the area under a conditional Cumulative density function?
 - (a) 0
 - (b) Infinity
 - (c) 1
 - (d) Changes with CDF
- 8. When do the conditional density functions get converted into the marginally density functions?
 - (a) Only if random variables exhibit statistical dependency
 - (b) Only if random variables exhibit statistical independency
 - (c) Only if random variables exhibit deviation from its mean value
 - (d) If random variables do not exhibit deviation from its mean value

9. Mutually Exclusive events _____

- (a) Contain all sample points
- (b) Contain all common sample points
- (c) Does not contain any sample point
- (d) Does not contain any common sample point

- 10. What would be the probability of an event 'G' if H denotes its complement, according to the axioms of probability?
 - (a) P(G) = 1 / P(H)
 - (b) P(G) = 1 P(H)
 - (c) P(G) = 1 + P(H)
 - (d) P(G) = P(H)
- 11. If f(x) is a probability density function of a continuous random variable, then $\int f(x)dx = ?$
 - (a) 0
 - (b) 1
 - (c) Undefined
 - (d) Insufficient data
- 12. The variable that assigns a real number value to an event in a sample space is called

(a) Random variable

- (b) Defined variable
- (c) Uncertain variable
- (d) Static variable
- 13. A random variable that assumes a finite or a countably infinite number of values is called
 - (a) Continuous random variable

(b) Discrete random variable

- (c) Irregular random variable
- (d) Uncertain random variable
- 14. A random variable that assume a infinite or a uncountably infinite number of values is called

(a) Continuous random variable

- (b) Discrete random variable
- (c) Irregular random variable
- (d) Uncertain random variable

15. If P(x) = 0.5 and x = 4, then E(x) = ?

- (a) 1
- (b) 0.5
- (c) 4
- (d) 2

16. The expected value of a random variable is its _____

- (a) Mean
- (b) Standard Deviation
- (c) Mean Deviation
- (d) Variance

17. The covariance of two independent random variable is

- (a) 1
- (b) 0
- (c) -1
- (d) Undefined

18. In random experiment, observations of random variable are classified as _

- (a) Events
- (b) Composition
- (c) Trials
- (d) Functions
- 19. The expectation of a random variable X(continuous or discrete) is given by _____
 - (a) $\sum xf(x)$, $\int xf(x)$
 - (b) $\sum x^2 f(x), \int x^2 f(x)$
 - (c) $\sum f(x)$, $\int f(x)$
 - (d) $\sum xf(x^2)$, $\int xf(x^2)$

20. Mean of a constant 'a' is _____

- (a) 0
- (b) a
- (c) a/2
- (d) 1
- 21. Variance of a constant 'a' is _____
 - (a) 0
 - (b) a
 - (c) a/2
 - (d) 1
- 22. The shape of the Normal Curve is _
 - (a) Bell Shaped
 - (b) Flat
 - (c) Circular
 - (d) Spiked
- 23. Normal Distribution is symmetric is about
 - (a) Variance
 - (b) Mean
 - (c) Standard deviation
 - (d) Covariance
- 24. For a standard normal variate, the value of mean is?
 - (a) Infinite
 - (b) 1
 - (c) 0
 - (d) Not defined
- 25. The area under a standard normal curve is?
 - (a) 0
 - (b) 1
 - (c) Infinite
 - (d) Not defined

26. For a standard normal variate, the value of Standard Deviation is _____

- (a) 0
- (b) 1
- (c) Infinite
- (d) Not defined
- 27. Normal Distribution is also known as _____
 - (a) Cauchy's Distribution
 - (b) Laplacian Distribution
 - (c) Gaussian Distribution
 - (d) Lagrangian Distribution
- 28. For a normal distribution its mean, median, mode are equal.
 - (a) True
 - (b) False
- 29. Stochastic process are
 - (a) Random in nature
 - (b) function of time
 - (c) Random in nature and are a function of time
 - (d) None of the mentioned
- 30. Stochastic processes are
 - (a) Strict sense stationary process
 - (b) Wide sense stationary process
 - (c) All of the mentioned
 - (d) None of the mentioned
- 31. Gaussian process is a
 - (a) Strict sense stationary process
 - (b) Wide sense stationary process
 - (c) All of the mentioned
 - (d) None of the mentioned

- 32. Power spectral density function is a?
 - (a) Real and even function
 - (b) Non negative function
 - (c) Periodic
 - (d) All of the mentioned
- 33. Energy spectral density defines
 - (a) Signal energy per unit area
 - (b) Signal energy per unit bandwidth
 - (c) Signal power per unit area
 - (d) Signal power per unit bandwidth
- 34. How can power spectral density of non periodic signal be calculated?
 - (a) By integrating
 - (b) By truncating
 - (c) By converting to periodic
 - (d) None of the mentioned
- 35. What is Wiener-Khinchin theorem?
 - (a) Spectral density and auto-covariance makes a Fourier transform pair
 - (b) Spectral density and auto-correlation makes a Fourier transform pair
 - (c) Spectral density and variance makes a Fourier transform pair
 - (d) None of the mentioned
- 36. According to Parseval's theorem the energy spectral density curve is equal to?
 - (a) Area under magnitude of the signal
 - (b) Area under square of the magnitude of the signal
 - (c) Area under square root of magnitude of the signal
 - (d) None of the mentioned

- 37. Autocorrelation is a function which matches
 - (a) Two same signals
 - (b) Two different signal
 - (c) One signal with its delayed version
 - (d) None of the mentioned
- 38. Autocorrelation is a function of
 - (a) Time
 - (b) Frequency
 - (c) Time difference
 - (d) Frequency difference
- 39. Autocorrelation is maximum at _____
 - (a) Unity
 - (b) Origin
 - (c) Infinite point
 - (d) None of the mentioned
- 40. Autocorrelation function of periodic signal is equal to _____
 - (a) Energy of the signal
 - (b) Power of the signal
 - (c) Its area in frequency domain
 - (d) None of the mentioned
- 41. Autocorrelation is a _____ function.
 - (a) Real and even
 - (b) Real and odd
 - (c) Complex and even
 - (d) Complex and odd
- 42. Autocorrelation function of white noise will have?
 - (a) Strong peak
 - (b) Infinite peak
 - (c) Weak peak
 - (d) None of the mentioned

- 43. For random process X = 6 and Rxx (t, t+t) = 36 + 25 exp(|t|). Consider following statements:
 (i) X(t) is first order stationary.
 - (ii) X(t) has total average power of 36 W.
 - (iii) X(t) is a wide sense stationary.
 - (iv) X(t) has a periodic component.

Which of the following is true?

- (a) 1,2 and 4
- (b) 2, 3 and 4
- (c) 2 and 3
- (d) Only 3
- 44. White noise with power density No/2 = 6 microW/Hz is applied to an ideal filter of gain 1 and bandwidth W rad/s. If the output's average noise power is 15 watts, the bandwidth W is
 - (a) 2.5 x 10 ⁽⁻⁶⁾
 - (b) 2.5p x 10 (-6)
 - (c) 5 x 10 ⁽⁻⁶⁾
 - (d) p5 x 10 (-6)
- 45. A stationary random process X(t) is applied to the input of a system for which $h(t) = u(t) t^2 e^{(-8t)}$. If E[X(t)] = 2, the mean value of the system's response Y(t) is
 - (a) 1/128
 - (b) 1/64
 - (c) 3/128
 - (d) 1/32